The TEMF PBL Scheme in WRF: Experience in real-time forecasts for California

Wayne M. Angevine CIRES, University of Colorado, and NOAA ESRL Thorsten Mauritsen

Max Planck Institute for Meteorology, Hamburg

- It runs and is running
- Results are subtly different than reference configuration
- Systematic evaluation is yet to come
- Here are some examples

What is TEMF?

- Total Energy Mass Flux
- In stable conditions, based on total turbulent energy and LES-derived stability functions
- In convective BLs, combines eddy diffusivity for local transport with mass flux for non-local
- Particulary intended for stable BLs and BLs with shallow cumulus / stratocumulus
- > New: Subgrid cloud parameterization

Forecasting for CalNex

Large field project in California

- multiple aircraft, ship, ground sites
- May July 2010
- Fine-scale modeling needed to handle complex terrain and coastline
- > WRF domains:
 - Triple nest (36, 12, 4 km)
 - Matched to EPA emissions inventory projection
 - Inner domain (d03) 300x200, covers all of CA

Driving Flexpart particle dispersion model

WRF configurations for CalNex

- ➤ "Reference" configuration
 - MYJ PBL & surface layer
 - 5-layer thermal (slab) LSM (1)
 - Navy high-resolution SST
 - Eta microphysics (5)
 - RRTM longwave (1)
 - Dudhia shortwave (1)
 - Kain-Fritsch cumulus (1) d01 only
- > TEMF configuration
 - same as reference except TEMF PBL & surface layer on d02 & d03

18 May Southerly jet

Ref 50 m wind speed

TEMF 50 m wind speed

18 May Southerly jet

Both WRF runs under-forecast jet strength

Ref slightly better at time and place of sounding

18 May 21Z cloud forecast

Column max. cloud fraction

18 May BL heights

16 June outflows from LA area Flexpart So.Cal. tracer

Ref

TEMF

16 June outflows from LA area WRF winds

TEMF

To Do

Implemented in WRF v3.1.1 (not released)

- Make ready for release (priority?)
- Couple to radiation scheme(s)
- Test with other physics combinations
- Improve numerics to allow longer timesteps?
- Systematic evaluation
 - Winds (vs. profilers)
 - Forecast time (effect of initialization)
 - Cloud fraction prediction (vs. satellite pics)

Thanks to:

- Kevin Durkee, SCAQMD (LA area profiler data)
- Dan Wolfe and Dave Welsh, NOAA ESRL (sonde data)
- Solution Strain Stra
- Jerome Brioude, NOAA ESRL (WRF/Flexpart web site)
- > NOAA ESRL High-Performance Computing Program
- Stephan de Roode for help with the cloud fraction parameterization